InterRidge Theoretical Institute: Biogeochemical Interaction at Deep-Sea Vents Woods Hole Sept 10-14, 2007

Geochemical diversity of hydrothermal systems: Thermodynamic constraints on biology

Wolfgang Bach University of Bremen, Germany

Lithosphere-Biosphere Interactions in Hydrothermal Vents

Driven by geochemical energy – powered by geofuels

Highly diverse: chemically and biologically

Dynamically linked with plate tectonics

Plate Tectonic - Igneous Genesis

- 1. Mid-ocean Ridges
- 2. Intracontinental Rifts
- 3. Island Arcs
- 4. Active Continental

- 5. Back-arc Basins
- 6. Ocean Island Basalts
- 7. Miscellaneous Intra-Continental Activity

Winter (2003)

Plate Tectonic - Igneous Genesis

3,5) Subduction	<u>1) Mid-ocean</u>	6) Ocean island
<u>zones</u>	<u>ridges</u>	volcanoes
Recycling of	Melting of	Melting of
volatiles (and	depleted and	deeper, less
solutes) in \rightarrow	degassed	degassed
Re-gassing the	upper mantle	mantle
mantle	\rightarrow Magmas	→Magmas
(C,S,H) \rightarrow	have low gas	have moderate
Wet melting \rightarrow	contents \rightarrow	gas contents
High $f O$	Dry melting \rightarrow	$(C \mu) \rightarrow$
Vet melting \rightarrow	contents \rightarrow	gas contents
ligh fO_2	Dry melting \rightarrow	(C, H) \rightarrow

Winter (2003)

Geofuel diversity in submarine geotectonic settings

Arc-related

Diversity of systems: physical/chemical differences

MOR, Subduction Peridotite-hosted

- pH 3 to 12
- Reducing conditions
- Negligible magma volatile flux?
- Abiotic organics?
- Early Earth analogs

MOR, Ocean Islands <u>Basalt-hosted</u>

- pH 3 to 5
- Relatively oxidizing conditions
- Variable H₂-CO₂ volatile flux
- Global relevance

MOR, Subduction Felsic rock-hosted

- pH <1-3
- Very oxidizing conditions
- Variable H₂O-CO₂-SO₂-HCl volatile flux
- Variable water (variable boiling temperatures)

Serpentinization and hydrogen

 $(Mg,Fe)_{2}SiO_{4} + H_{2}O + C =$ $Mg_{3}SiO_{5}(OH)_{4} + Mg(OH)_{2} +$ $Fe_{3}O_{4} + H_{2} + CH_{4} + C_{2} - C_{5}$

1

Olivine + water + carbon = serpentine + brucite + magnetite + hydrogen + methane + hydrocarbons

Peridotite-Hosted Hydrothermal Systems

Data: Charlou et al. (2002)

Peridotite-Hosted Hydrothermal Systems

$2\text{FeO} + \text{H}_2\text{O} \rightarrow \text{Fe}_2\text{O}_3 + \text{H}_2$

$4H_2 + CO_2 \rightarrow CH_4 + 2H_2O$

A $(Mg,Fe)_2SiO_4 + H_2O + C =$ $Mg_3SiO_5(OH)_4 + Mg(OH)_2 +$ $Fe_3O_4 + H_2 + CH_4 + C_2 - C_5$ Olivine + water + carbon = serpentine + brucite + magnetite + hydrogen + methane + hydrocarbons

Serpentinization: Geochemical Modeling

Geochemical reaction path model (EQ3NR/6)

Serpentinization of the oceanic lithosphere

MgO-SiO₂-H₂O phase relations at 500 bar

Serpentinization: Geochemical Modeling

Phase relations

Serpentinization: Geochemical Modeling

Fluid compositions

Arc volcano hydrothermal system

Gary Massoth et al.

Mariana and other arc systems sulfuric and carbonic acid springs

Embley et al. (2004)

Manus Basin, Papua New Guinea

North Su

Geochemistry – Biology relations: Gibbs Free Energy

$$H_2(aq) + S^0 \rightarrow H_2S(aq)$$

$$\Delta G_r^{\circ} = \Delta G_{H_2S(aq)}^{\circ} - \Delta G_{H_2(aq)}^{\circ} - \Delta G_{S^0}^{\circ}$$

$$\Delta G_{P,T}^{\circ} = \Delta G_{f}^{\circ} - S_{298}^{\circ} \left(T - 298 \right) + \int_{298}^{T} C_{P}^{\circ} dT - T \int_{298}^{T} C_{P}^{\circ} d\ln T + \int_{1}^{P} V^{\circ} dP$$

$$\Delta G_r = \Delta G_r^\circ + RT \ln Q_r$$

 $Q_{r} = \frac{a_{H_{2}S(aq)}}{a_{H_{2}(aq)} a_{S^{0}}} = \frac{m_{H_{2}S(aq)}\gamma_{H_{2}S(aq)}}{m_{H_{2}(aq)}\gamma_{H_{2}(aq)}}$

Energetics from mixing hydrothermal fluids with seawater

Slide from Jan Amend, redrawn from McCollom & Shock (1997)

Thermodynamics → Tracing the energy across the interface between geology and biology

Thermodynamics in Biology

- What is life in terms of thermodynamics?
 - Sustaining disequilibria ... and
 - increasing entropy ... by
 - using energy!
- What is the source of the energy?
 - Light (photosynthesis)
 - Chemical bonds in organics (heterotrophy)
 - Electron transfers (chemosynthesis)

$\Delta G = \Delta H - T \Delta S$

Dog food

Dog shit

Bioenergetics

Energetic costs of building biomass (from McCollom & Amend, 2005)

In theory (McCollom & Amend, 2005) 1.4 kJ / g cellular biomass (anaerobes) 18.4 kJ / g cellular biomass (aerobes) *Anabolic advantage of living anaerobically*

<u>In reality</u> (Heijnen & van Dijken, 1992) 30-40 kJ / g cellular biomass (anaerobes using H₂ as e-donor) 80-170 kJ / g cellular biomass (others)

- \rightarrow Only about 10% efficiency
- \rightarrow 90% get lost in form of heat and waste products
- \rightarrow This is increasing entropy in the surrounding

Chemolithoautotrophic biomass production estimates

- Axial hydrothermal vents: ~10¹³ g C/ yr (McCollom and Shock, 1997)
- Hydrothermal plumes: ~10¹² g C/ yr (McCollom 2000)
- Ridge flanks/weathering: ~10¹² g C/ yr (Bach and Edwards, 2003)
- Photosynthetic: ~10¹⁷ g C/ yr (Whitman et al., 1997)
- Sulfate reduction in marine sediments: ~2 x 10¹² g C/ yr (Bach and Edwards, 2003 based on sulfate flux rates from D'Hondt et al., 2002)

What reactions are exergonic?

What reactions support how much biomass?

Hydrogen can be generated abiotically by:

- (1) Reactions between C-O-H(-S) species in melts and vapors
- (2) Decomposition of methane at T>600°C
- (3) Radiolysis of water by radioaktive decay of U, Th, and 40-K
- (4) Catalysis of silicates under stress in the presence of water
- (5) Hydrolysis by ferrous minerals in mafic and ultramafic rocks

Away from magmatic centers, only pathways 3-5 are viable.

- (3) Radiolysis can support on the order of 1,000-10,000 cells per cm³ in marine sediments (Spivack et al., in press)
- (4) Happens, but is likely not a continuous source of hydrogen(5) Investigated here

Source: Water-rock
Interaction
@ T=2-120°C

 Source: Water-rock interaction @>350-400°C, followed by mixing with cold seawater

Isotopic record of sulfate reduction in basalt and serpentinite

Sulfur isotope systematics basalt-serpentinite comparison

Data: Jeff Alt

Seawater – vent fluid mixing

Logatchev fluid mixed with sea water

 H_2 - O_2 is allowed to equilibrate

Seawater - vent fluid mixing

Seawater – vent fluid mixing

Summary

- Vent fluid compositions differ fundamentally in different plate tectonic settings.
- Phase equilibria in the deepest and hottest part of hydrothermal systems set the fluid chemistry that is further modified by mixing with cold seawater, creating disequilibria
- Another way of creating habitable conditions for microbial life is in water-rock reaction systems running at temperatures too low for the system to reach equilibrium
- Life is ineffcient in harvesting the geochemical energy, but relations between the amount of energy and the production of biomass can be expected
- The primary fuel for microbial biomass production is: H₂S in basalthosted, H₂ and CH₄ in serpentinization, and S and Fe in felsic rock hosted systems
- In mixing environments, the transition between anoxic and oxic conditions depends on the compositions of the mixing fluids and the kinetics of the H₂-consuming redox reactions

Acknowledgments

For discussions and materials:

- Tom McCollom, Dionysis Foustoukos, Jan Amend, Art Spivack (Thermodynamics and bioenergetics)
- Katrina Edwards (Deep biosphere)
- Jeff Seewald, Paul Craddock, Eoghan Reeves (Manus Basin fluid chemistry)
- Frieder Klein, Michael Hentscher (Geochemical modeling)
- Ron Frost (Petrology)
- Nicole Dubilier (Geofueled vent biology)

For funding:

- NSF and DFG
- InterRidge folks for invitation

Silica-metasomatism in the oceanic lithosphere

MgO-SiO₂-H₂O phase relations at 500 bar

