Insights on habitat chemistry from in situ voltammetry

RIDGE Theoretical Institute on Interactions at Deep-Sea vents, September 11, 2007

George W. Luther, III, College of Marine and Earth Studies, University of Delaware, Lewes, DE

Acknowledgments

University of Delaware:

students: Tommy Moore, Shufen Ma, Katherine Mullaugh, Mustafa Yucel, Heather Nees, Brian Glazer

postdocs: Martial Taillefert, Tim Rozan, Edouard Metzger, Tim Waite, Jeffrey Tsang

colleagues: Craig Cary

Industrial: Donald Nuzzio (AIS)

nonUD colleagues: Rich Lutz, Tim Shank, Costa Vetriani, Chuck Fisher, James Childress, Maya Tolstoy and their groups

Outline

In situ techniques are necessary to study the environment – voltammetry as a good *non-selective* analytical method

Comparison between 9 N EPR and Lau Basin – integrated studies with biology and geophysics

How fast and how long do we need to collect data to understand an organism's response to chemistry?

How do organisms respond to the absence or presence of O_2 , H_2S and S / Fe species in the environment? A look at chemosynthesis

Patterns of organism distribution

At vents ultimate source of energy = vent fluids **Therefore, primary productivity positively correlates** with environmental stressors/indicators (high temperatures and "toxic" chemistry) **Factors influencing faunal distribution patterns: Abiotic environment Positive and negative species' interactions Important in areas of high primary productivity** but relatively low environmental stress

PEEK & Glass encased electrodes in marine epoxy

100 μm diameter Au wire

Water column / vent working electrode

Sediment working electrode

O₂, Fe²⁺, Mn²⁺, H₂S, H₂O₂, I⁻, S_x²⁻, S₂O₃²⁻, FeS_{aq}, Fe(III) are all measurable in one scan, if present

Tested to 2600 m and 120 °C

Gold Electrode Tip Preparation

After epoxy injection before sanding and polishing - GLASS

Final polish (GLASS)- 0.24 micron

After polarization (PEEK)– note H₂ gas evolving

VOLTAMMETRY I vs E plots [similar to A vs λ plots]

Multi-analyte sensor

Au/Hg Electrode Reactions of Interest Oxygen and sulfur species

<i>Reaction</i> (- <i>scan</i> ; 200 <i>mV</i> / <i>s</i> ; 25 ° <i>C</i>)		Ep (V) vs SCE
1a)	$O_2 + 2 H^+ + 2 e^- \rightarrow H_2O_2$	-0.30
1b)	$H_2O_2 + 2 H^+ + 2 e^- \rightarrow H_2O$	-1.30
2a)	$HS^- + Hg \rightarrow HgS + H^+ + 2 e^-$	adsorption onto Hg <-0.62
2b)	$HgS + H^+ + 2 e^- \leftrightarrow HS^- + Hg$	-0.62
3 a)	$S(0) + Hg \rightarrow HgS$	adsorption onto Hg <-0.62
3b)	$HgS + H^+ + 2 e^- \leftrightarrow HS^- + Hg$	-0.62
4 a)	$Hg + S_x^{2-} \rightarrow HgS_x + 2 e^{-}$	adsorption onto Hg <-0.62
4b)	$HgS_{x} + 2 e^{-} \leftrightarrow Hg + S_{x}^{2-}$	-0.62
4c)	$S_x^{2-} + x H^+ + (2x-2) e^- \rightarrow x HS^-$	-0.62 (varies with v)
5)	$2 \text{ RSH} + \text{Hg} \leftrightarrow \text{Hg}(\text{SR})_2 + 2 \text{ H}^+ + 2 \text{ e}^-$	<-0.62
6)	$2 S_2 O_3^{2-} + Hg \leftrightarrow Hg(S_2 O_3)_2^{2-} + 2e^{-}$	-0.15

Au/Hg Electrode Metal Reactions of Interest

Reaction (+ scan; 200 mV/s; 25 °C) Ep(V) vs SCE

Redox metals measurable

1)	$FeS + 2e^- + H^+ + Hg \rightarrow Fe(Hg) + HS^-$	-1.15
2)	$Fe^{2+} + Hg + 2e^{-} \leftrightarrow Fe(Hg)$	-1.43
3)	$Mn^{2+} + Hg + 2e^{-} \leftrightarrow Mn(Hg)$	-1.55

4)
$$Fe^{3+}(organic) + e^{-} \rightarrow Fe^{2+}(organic)$$
 -0.2 to -0.9

Trace metals measurable

5)	$Cu^{2+} + Hg + 2e^{-} \leftrightarrow Cu(Hg)$	-0.18
6)	$Pb^{2+} + Hg + 2e^{-} \leftrightarrow Pb(Hg)$	-0.46
7)	$Cd^{2+} + Hg + 2e^{-} \leftrightarrow Cd(Hg)$	-0.62
8)	$Zn^{2+} + Hg + 2e^{-} \leftrightarrow Zn(Hg)$	-1.05

Solid state (micro)electrodes for the analysis of biologically relevant compounds and ions **Chemistry Drives Biology Rationale for design and use** Fine scale resolution - mm in sediments; µm in biofilms and mats determine sediment heterogeneity vs. homogeneity use to prospect for life forms and understand ecosystem health Use in sedimentary porewaters of wetlands, bays, oceans and lakes in water column; e.g., Chesapeake Bay, Black Sea at Hydrothermal Vents, Yellowstone hot springs, in corrosion studies

ELECTRODE STANDARDIZATION

- Electrodes standardized in matrix of interest for each species.
- Current is independent of pH (4-8) for O₂, H₂S, Fe, Mn.
- Current is dependent on Temperature for all species; the diffusion coefficient depends on temperature.
- Current is independent of Pressure.
- Current depends on [flow rate]^{1/2}. Above 1.68 cm/s, there is NO flow rate dependence on 100 μm diameter electrodes.
- Validation *via* discrete samples and *in situ* Clark O₂ electrodes.

In situ comparison of O₂ Clark vs voltammetric Au/Hg in sediments from a ROV

Real time voltammetry of porewaters

Raritan Bay 1997 - Dive 6

What ranges and variability in chemistry do organisms experience?

Tools for diffuse flow area studies

Unattended system (ISEA or INSECT)

9 N EPR Foundation Organisms with endosymbionts

distribution controlled by local physical and chemical environment

Tevnia tubeworm

Riftia tubeworm; mussel

Basalt surface – glass like

Lau Basin Foundation Organisms with endosymbionts

Less reduced

reduced

Mussels - Bathymodiolus brevior

Snail "Ifremeria"

Snail "Alviniconcha"

Basalt or andesite surface – friable with high surface area

Bacterial Symbionts of Vent Organisms

• Chemolithotrophic

Endosymbionts

Requiring co-occurrence of Sulfide (H₂S,HS⁻), O₂, and CO₂

Chemosynthesis or Chemautotrophy

 $\mathbf{O}_{\mathbf{2}}$

CO₂

HS⁻ (binds to tubeworm hemoglobin – red blood) Mussels and clams have symbionts and red blood too!

Tubeworms have symbionts

and blue blood!

Distribution of hydrothermal vents

North East Pacific Rise

Fe, S chemistry Origin of Life, of organic compounds and a source of H₂ at HYDROTHERMAL VENTS

 $FeS + H_2S \rightarrow FeS_2 + H_2$

Wachterhauser's hypothesis (1988) BUT first noted by Berzelius!!

Voltammetry can measure FeS_{aq} (molecular clusters) and H₂S

Apply *in situ* solid state electrodes to look for (micro)organisms that can benefit from this reaction or the products of this reaction

Apply *in situ* solid state electrodes to understand the chemical reason why organisms live in different ecological niches

General Block Diagram of IN SITU submersible Electrochemical Instrument

Black Smoker Voltammetry Speciation Data-0.5 m above vent chimney

Major signals for Free H₂S and FeS_{aq}
O₂ not detected

Volts vs Ag / AgCl

$$S_t = S_{AVS} = FeS_{aq} + H_2S$$

Sulfur chemistry 0.5 m above a Black Smoker

Electrical noise from Alvin

Near Plume of *Riftia*

- H₂S/HS⁻ and O₂ only
- No FeS_{aq}
- polysulfides can be present
- chemoautotrophs require H₂S

Volts vs Ag / AgCl

"Rusty" Riftia

- Near ambient conditions
- O₂ only dominant signal
- Tubes encrusted with Fe (III)
- NO LIVING TUBEWORMS

Volts vs Ag / AgCl

Pompeii Worm Habitat Characterization

- Major signal due to FeS_{aq} + Fe²⁺
- Free H₂S/HS⁻ was not detected
- O₂ not detected
- Epibionts not chemoautotrophic

Urrent (A

Volts vs Ag / AgCl

Electrode indicates in what chemical environment life forms reside

Change in chemical speciation at hydrothermal vents

 $H_2S + Fe^{2+} \leftrightarrow FeS_{aq} + 2H^+$

In *Alvinella* tube, 80 ± 20 °C - 250 atm

> In flow cell; 2 °C 250 atm

Aboard ship lab 22 °C 1 atm

FeS_{aq} + 2H⁺↔ H₂S + Fe²⁺ Shift in equilibrium

LeChatelier's principle

Important Fe/S Chemistry

 $H_2S \text{ oxidation } pH > 6 \text{ (near Riftia)}$ $O_2 + Fe^{2+} \rightarrow Fe^{3+}$ Fe³⁺ + H₂S → Fe²⁺ + S(0) as S₈ and S_x²⁻ (S₂O₃²⁻ also) Fe(III) ad Mn(III,IV) solid phases react with H₂S also

- FeS formation and dissociation (near Alvinella) Fe²⁺ + H₂S ↔ FeS_{aq} + 2 H⁺
 (FeS_{aq} formation is enhanced with increasing temperature; Rickard, 1997)
 - **Pyrite formation**

 $FeS_{aq} + H_2S \rightarrow FeS_2 + H_2$

ISEA = *In Situ* Electrochemical Analyzer The future is in situ sensors? Moored Systems including Hydrothermal vent applications

This area was destroyed in 2006 by an undersea eruption

Riftia at TICA in 2003

O₂ and **H**₂S data generally anti-correlate but sometimes correlate above *Riftia*

H₂S varies 2 orders of magnitude as O₂ varies 50 %

East Wall - 2005

Moore et al, unpublished

4900 scans per electrode over 2.25 days

A) Mussels / Riftia

B) Source waters

East Wall - 2005

4900 scans per electrode over 2.25 days

Continuous wavelet transforms (WT) of H_2S and cross-wavelet transforms (XWT) of H_2S and tide height for electrodes A and B. Hot colors indicate high wavelet power. Arrows on the XWT indicate phase relationships, arrows pointing to the right are in phase and left are out of phase. Both electrodes have a strong tidal signal (red band at a frequency of .5 on the WT's). Electrode A is in phase with the tides and B is out of phase.

Wavelet Analysis

Continuous wavelet analysis, cross-wavelet and wavelet coherence analysis were conducted using Matlab code developed by Aslak Grinsted, and is available at: <u>http://www.pol.ac.uk/home/research/waveletcoherence/</u> Continuous wavelet analysis expands time-series data into frequency space. The process is similar to a Fourier transform, and is performed by applying scaleable waveforms to the data at each time-step. The cross-wavelet transform finds regions of high common power in the time series.

H₂S Continuous Wavelet Transform – Electrode A

Some conclusions on high data collection

Electrodes A and B both vary with the tides – A is in phase and B is out of phase. Since these electrodes are positioned within the same plume of shimmering water, the difference in phases may reflect a change in local currents on a tidal frequency.

Additionally, Tolstoy and Waldhauser have found that siesmicity increases at high tide, which could also be influencing diffuse flow chemistry.

Obviously complicated physical supply of chemicals to organisms

2005 – East Wall 9^o 50' N East Pacific Rise

2007 - 9° 50' N East Pacific Rise (all data)

Amphipod swarm – what do they react to? And how fast?

Sensor from DSV Alvin

Moore, Shank et al, unpublished

Distribution of hydrothermal vents

Data Collection

- **June 2005**
- Imagery:
 - JASON II
- Chemistry:
 - *in-situ* voltametric chemical analyzer

Lau Basin

See Ma et al poster which will show significant Mn²⁺ and Fe^{2+,3+} at Mariner

H₂S/T ratios N→S 5.5 (KM) 5 (TC) 3 (Abe) 2 (Tu'i) <1 (Mariner)

Kilo Moana (Dive J2-235): Marker E

Less reduced

Mussels have symbionts and red blood (Fe hemoglobin)!

Mussels - Bathymodiolus brevior

Snail "Ifremeria"

Snail "Alviniconcha"

Snails have symbionts and blue blood (Cu hemocyanin)!

reduced

In-situ collections and measurements:

Mosaics from ABE1 in 2005

See Podowski and Becker posters

Mosaics from ABE1 in 2005

Max. Temperature Distribution (°C) 2.6 4.0 6.0 8.0 10.0 15.0 25.0 40.0 60.0 15.0 25.0 40.0 15.0 25.0

(a)

 $[O_2]$ Distribution (μ M)

Additional Redox Indicators

See Mullaugh et al poster

- Measuring H₂S and O₂ only reflects two extremes between reduced and oxidized conditions
- Additional (sulfur) species can be used to characterize intermediate redox environments

Kilo Moana: Marker E

Kilo Moana, Marker E: Thiosulfate

$S_2O_3^{2-}$ can be formed by abiotic and biotic pathways

Incomplete abiotic oxidation by Fe(III) and Mn(III,IV) minerals present in the substrate Fe(III) / Mn(III,IV) + H₂S → S_x²⁻ + S₈ → S₂O₃²⁻

Incomplete biotic oxidation during chemosynthesis $H_2S \rightarrow S_x^{2-} + S_8 \rightarrow S_2O_3^{2-}$

At some times increased amounts of S₂O₃²⁻ over the H₂S coming from the diffuse flow source are likely due to active pumping or excretion of this H₂S oxidation byproduct

Conclusions

Voltammetry is an excellent *in situ* tool to study redox species and kinetics in real time; removal experiments show that H₂S is higher after removal indicating its consumption

Organisms can respond on a variety of time scales starting from seconds (based on cultures / mats; amphipods) to ? Organisms occupy ecological niches based on chemistry

Mussels at Lau and EPR "appear" to reside in similar diffuse flow (H₂S), but at Lau $S_2O_3^{2-}$ is a prevalent species – due to friable and high surface area substrate (do microbes use $S_2O_3^{2-}$?)

Snails and *Tevnia* live in microaerophilic regions so O₂ transport carrier for *Tevnia* needs further study

Need to combine with other tools/data to better understand physics, chemistry and their role on biology: temperature / salinity, pH, seismicity, etc.

Microaerophilic, H₂ oxidizing, thermophilic and chemolithotrophic eubacterium (EX-H1)

"Persephonella spp."

Best growth at 70-75 °C Electron donor - H₂, S° Electron acceptor - O₂ (microaerophilic), NO₃⁻, S₂O₃²⁻, S° Carbon source - CO₂ 85% similar to *Aquifex* 93 % to Mid Atlantic 16S rRNA sequence

Reysenbach et al. 2000. Nature 404:835 Gotz et al., in press. IJSEM

Electrode helps prospect for life forms

Yellowstone National Park Possible model for banded

iron formations?

In situ determination of Fe(II) oxidation by cyanobacteria

FerrihydriteHot spring
(source)(Iron(III) oxide)Microbial mat

Chocolate Pots – Yellowstone National Park 55°C source; Fe(II) and Mn(II) but no H₂S, O₂, pH ~ 6

Electrodes in mat – light experiment

dark or light filter experiments

Chocolate Pots – South mound profiles

O₂ produced by cyanobacteria oxidizes Fe²⁺ but not Mn²⁺ No O₂ production, Fe²⁺ and Mn²⁺ do not oxidize – atmospheric O₂ unimportant

Dark vs Light Fe(II) Kinetics – in situ

Electrode located at 0.5 mm below the mat/water interface – where maximum O₂ is produced

Fe(II) oxidation rates from these data indicate that the reaction is abiotic (inorganic).

Kinetic analysis of the Fe(II) decay region

Pseudo first order plot

Zeroth order plot

A zeroth order reaction is consistent with light being the primary limiting factor as the concentration of O_2 is dependent on light intensity and photosynthesis.