Continuous long-term observation of vent ecosystems and biogeochemical interactions using

North East Pacific **Time-series** Undersea Networked **Experiments** NEPTUNE CANADA Mairi Best, Associate Director - Science

NEPTUNE Canada

A plate-scale, seafloor network of remote, interactive, natural laboratories for realtime, 4-D experiments designed to quantify linkages among oceanographic and plate-related processes

Funding

- Approximately \$80 million for 5 years
 Half from the Canada Foundation for Innovation
- Half from the BC Knowledge Development Fund

As well, there have been contributions to specific developments (e.g., underwater High Definition Television) from CANARIE

NEPTUNE Development

Workshops:

- Victoria May 3-5, 2004
- Victoria September 27-29, 2004
- Halifax November 22-23, 2004
- Proposals Due: January 18, 2005
- External Review Committee; Executive Committee review relative to facility scope
- \$11 million available for observing systems
- Decisions July 2005
- 17 group proposals received; 5 successful

Science Research Themes

- Plate tectonic processes and earthquake dynamics
- Dynamic processes of fluid fluxes and gas hydrates in the sea bed
- Regional oceanic/climate dynamics and effects on the marine biota
- Deep-sea ecosystem dynamics
- Engineering and computational research

VENUS Coastal Observatory Operational Feb. 2006-present

Strait of

Georgia

VENUS

Victoria Experimental Network Under The Sea

> Saanich Inlet

VENUS ocean observing network, Saanich Inlet, BC

Oxygen Data from VENUS-Saanich

http://www.venus.uvic.ca/index.html

NEPTUNE Canada Cable Lay 2007

Cable Lay 2007

Sea Cable Storage

Nodes

Data Management and Archive System (DMAS)

NEPTUNE Canada

 capable of supporting ten primary nodes, with each primary node equipped to support two 10kV secondary nodes

 each primary node is currently configured with 4 Gb/sec connectivity to shore, but is upgradeable to 16 Gb/sec. Each secondary node has two 1 Gb/sec connections to its primary node.

each node, whether primary or secondary, can provide up to 9kW to instruments, limited by the overall network power consumption of 60kW

Science Budget

Science" budget (everything past the nodes) is 17% of total budget

 Actual instruments are only 4% of total budget, installation 3%, connectivity 10%

NEPTUNE Canada - Status

- Secured a further \$20M in fall 2006 (total 80M)
- Scope of observatory expanded from 2 to 5 node
- Increased the instruments and data flow by 250%
- Observatory will now initially host 113 instruments
- All instruments are in the process of being procured or built, with the first instruments arriving in our testing facility
- Cable, repeaters and branching units are being laid now, then nodes next summer, followed by instruments
- NSERC and CECR being approached for operating funds
 - current estimate is ~ 10M

Folger Passage

Barkley Canyon

ODP 889

Cascadia Gas Hydrates

Seismic

IODP proposal #553

ODP 1027

Advanced CORK System for Ocean **Bottom** Boreholes

(courtesy of E. Davis)

Endeavour Ridge

Broadband Seismometer

Short Period Seismometers

Will Wilcock (UW) & Gary Rogers (PGC)

Endeavour Block Diagram

Regional Circulation

- real-time snapshots and a long-term picture of the dynamics of the hydrothermal plume in the axial valley
- supporting information for complementary studies of biogeochemical processes in hydrothermal plumes
- data from the NEPTUNE instruments can be used to design optimal sampling strategies for mass balance studies of interactions between microbes and elements in vent plumes
- sampling plans could be fine-tuned in the field using real-time data from moorings.

Rick Thomson (IOS)

Microbial Incubator

Deb Kelly (UW)

Microbial Incubator

- real-time temperature data
- recovered annually to provide data on microbial growth within the chimney walls
- first step along a developmental pathway leading toward having gene chips or some future microbial sensors inserted in the chimney walls
 - potential real-time info on microbial processes in relation to fluid flow within the sulphide edifice and links to subsurface hydrology and seismic activity

Temperature-Resistivity Probe

McLane Water Sampler

 Dave Butterfield (PMEL)